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ABSTRACT

Two conditionally heteroscedastic autoregressions are

considered. It is shown that under suitable conditions, the

processes are stationary and ergodic, and that the stationary

initial distribution can be represented by a nonlinear function

of independent, identically distributed standard Normal random

variables.
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1. Tntroduction

Autoregressive moving average (AR'iA) models are rou-

. tinely used in time series analysis, particularly since

th- -:ublication of Box and Jenkins' ( 1 ) book which set

.... methods for the identification, estimation and

7--- s_- ch :'- - u f these models. There is, however,

-- :s= :- 7 - F_ ,-s.-_se that every process can be reduced to

one which i -:equately represented by a linear model.

Despite this, the linearity assumption is seldom questioned.

The lack of useful, nonlinear alternatives to the ARMA model,

with the exception of Granger and Andersen's ( 5 ) bilinear

AR,MA (BARMIA) model, left few options. Recently, however,

Engle ( 4 ) introduced a new class of nonlinear models.

Engle ( 4 ) observed that, given the past, the conditional

variance of a stochastic process is not necessarily constant

but can, ,in eral, depend on past observations. Accord-

ingly, nonr.ear, conditionally heteroscedastic time series

"models ca be derived from the classical models. Although

e"..._ cn ... one specific formulation, conditional

heerosce_---:-ty is a general property and can be used to

define a of nonlinear models.

:'-i raer two conditionally heteroscedastic auto-

regrez-sicn. are considered. Properties of the models are

s"t-"'d s. nd slrulated sample paths are presented. It is

show.n that under simple conditions the processes are station-

- ary and ergcdic, and that the stationary initial distribution

0_
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can be expressed in terms of independent, identically distri-

buted (i.i.d.) standard Normal (N(O,1)) random variables.

:-onditionally Heteroscedastic Autoregressions

- - i " + +7 pt-p + Et be a p-th order, zero

t:2eres4on and let = 6(Yt be the sigma

a.~gz -a Eeier:-ed by the yt's up to time t. In the classi-

cal model it is assumed that is an i.i.d. sequence of

2 2
N(O,o"6 ) random variables, where 0. Consequently, given

the conditional mean of Yt is linear in yt-..

and the conditional variance is constant. Now, consider as

an alternative model one where the conditional variance de-

pends on the past observations. The result is the condi-

tionally heteroscedastic autoregressive (CHAR) mode.:

- iyt-i . pyt-p + 6t (2.1a)

;here the Ei-trfbution of Et6 conditioned on t is given

6tjjt. -,-, hto ) (2.1lb)

with ht l- (yt l ,y t _2 .., y t -r ;& ) for some finite r>11.

The .VunctLon h(') is a positive function of

- Y-. and e is vector of parameters.

The CHAR model is obviously nonlinear, even though the

16 .
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conditional mean is linear in tt-2' P In con-

trast, the nonlinearity of a BARr-A model is the result of a

no:linear conditional mean. Engle ( 4 ) defined a general,

-."tionally heteroscedastic regression model in which the

regres._-. ca:-_ exogenous as well as lagged variables.

. :fth. no-eion used here is Engle's and some of the

properties wi-h hold for the autoregression also hold for the

more general regression model (see Engle (4) ).

The CHAR process defined by (2.1a,b) is a Narkov process

* where the order depends on ht_ 1 but is always at least p.

For a given h it will be necessary to check whether or not
t-1

the process is stationary. In any case, it is easy to see

that E(6t)=O, for all t, and Cov(6 s6 t)=O, for s/t, since

the conditional mean of Et is zero. The Et s are uncor-

related althcugh they obviously not independent. Thus, if

the [ytJ prcess is stationary and has a finite variance,

the autocorrelation function is the same as in the case of

i-i.d. _ .E., the autocorrelation at lag j, f, is

0 given by

-c = rr(ytyt-j) =A GJ+...+ ApG J  (2.2)
j 1 1p p

wn-ere Al,.AD are constants and G-1 , .. ,G_1 are the roots

of the characteristic polynomial tz)=-uoiz-...-dpzP with

I~i~li=1,2,...,p. Furthermore, the unconditional vari-



-' ance, -" ,is given by

"2 ht )/( *1-0fl-" .(2p. 3)= E(1 )->

if E(ht 1 ) "

There are numerous choices for the cond-t-c.ai variance

htI. However, not all choices lead to useful --. ls. it

is desirable to choose h so that the mode7 -s flexible

enough to give a good approximation to a variety of processes

while remaining mathematically tractable. In this paper,

h is assumed to be of the form ht2 62

2
or ht_,: PO+ 1 (OlYt .i+... . The corresponding models

will be referred to as CHARI and CHARII, respectively. The

CHARI model is a special case of Engle's ( 4 ) conditionally

heteroscedastic regression model and the CHARII model is the

time series analog of the regression model in which the vari-

ance depends on the mean (see Carroll and Ruppert (3) , for

example). The properties of the CHARI and CHARII models

are described in Sections 3 and 4. Proofs -- he t.-

rems, which give sufficient conditions for the static'- -

and ergodicity of the proceuses, are prcvi ed

°0 ,
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3. The CHARI Model

The-CHARI(p,k) model has the following representation:

c:Kz.I(pk): yt= t . Pyt-p + (3.1a)

+ (cc + 4 +dk z t  (3. b)

for some fixed, finite k>O and [zt- i.i.d. N(0,1).
The parameters OL0, OL.. 'ck are nonnegative with c4 stric y

k-,0

positive. Engle ( 4 ) referred to the (6tl process, d

fined by (3.1b), as an "autoregressive-conditional-hetero-

scedastic" (ARCH) process. In that case the word "autore-

gressive" refers to the conditional variance structure and

should not be confused with the autoregression in (3.1a) or

the gener-L CHAR process given by (2.1).

A CHARI(p,k) process is a nonlinear (p+k)-th order

fiiarkov process. Typical simulated sample paths are pre-

sented in ?---re 1. These illustrate the "patchiness"

* which is c....-eristic of the CHARI process.

' -- "  Conditio- s under which the process is stationary and

• ergsdic have yet to be determined. It is obvious, however,

' that the roots of the characteristic polynomial (z) must

-lie outside the unit circle since this is required for the

..., the special case where O(.;-2...=. =O, which corresponds to

. the usual autoregression. In the general model it will

a ,o

o'....>
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also be necessary to impose restrictions on i20'. ck to

ensure the stationarity of Lt. The appropr'ate condition

ho. z--f when the roots of the characteristic polynomial

14?> -".- z-. ..-0kk  lie outside the unit circle. Combining
"... gives the following theorem. A proof is

-. 5... -:--ied in Section 5.

Theorem 3.1: (Stationarity and Ergodicity of the CHARI(p,k)

Process) - Let t be a CHARI(p,k) process with 000 and

>/O, i=1,2,...,k. Assume that all the roots of both (z)

and V(z) lie outside the unit circle and, yoYl,...,pP

and EO 9 E... F- have finite variances. Then 14 is

asymptotically stationary and ergodic.

Under the conditions of Theorem 3.1, there is a unique

stationary initial distribution. The corresponding station-

ary, joint -nsity function for T. nsuy uncionfor(Yt-p-k+lYt-p-k+2,..., yt

is the ncr~-iv-al solution, f of the inte-

ga- 'equaE-c,2:

fY--k+1'''''Yt ) = f 2f( O0 +c-irt +.+0krtk)]

-00

X ~ ~ + rx j/c+r 1 +. +c( rt) .(t~.".Yl dytp

(3.2)

where rt ; - pyt. The marg i.nal distribution

..

b' "%."-
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of yt obtained by integration, can also be expressed as the

d distribution of a nonlinear function of i.i.d. N(0,1) random

va-ibles (see equation (5.13) ir the proof of Theorem 3.1).

AL --:ugh the distribution of Yt is symmetric about zero, it
i5 ob-vi:-sl, :~n-J&;ssia' except .:hen i=2 . -O.

Unrt' aatey, (3.2) appears to be difficult to solve,

even in tr-.37_2Dlest case with p=k=l. It is, however, easy

to calculate the moments of 6t and Yt by using the condition-

al Normality to evaluate a conditional expectation first.

Since the distribution of Yt is symmetric, all odd power

moments exist and are zero. The unconditional variance of

6 t can be found by solving the equation:

2 2 2 2E(et) = E(ht_ 1 ) = oO+oE(6t l)+..k(6tk ) .

Therefore,

= 0/(1 ci. _04k) (3.3)

" here -i- ar.c substituting into (2.3) gives the station-

ary, unco-itio:-al variance of Yt:

- i2( = o%/L(i-ci - k)-)f- .- 4p)] (3.4)

where ,,if i 1.

Higher order moments can be calculated in a similar
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fashion, although this involves increasingly more algebra.

In addition, the existence of higher order moments requires

in:reasingly more stringent restrictions on the parameters,

-hat the only case where all moments are finite is the

Gaussian c O) case. For example, when p1k71,

•": .n L.) give

2

2 2
y...-. _- (1-oci(-

0y

which are both finite and positive if a0>0, 01441 and ll 41.

These are just the conditions for stationarity. However,

) = E[ t 1 )] 3E[(CI 0+0C16 1 ) 2 1.

Therefore,

- 2-:.>:. : ;( +oc)I[( 1-,,1)( 1-3o )]
.' '. 1

which is finite and positive only if 0403 -

W.. In general, when p=k=l, the necessary and sufficient
" 2j

condition for the existence of E(6 is
dt

".I .3T(2i-) 1, j=,2,... (3.5)

-,j'j

'U.,
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2 j ) E( 2j) ( .)i
(Theorem 1; Engle (4) ). Since E(y t ) (3.5) is

necessary for the existence of E(y t ). As j increases

r.-_'_77 decrease and in the limit, a1=0 is the only case where

a-- moments of yt and 6 exist. Therefore, the density
t t

functions -  generally have heavier tails the

-- r-a -istribution. Bounds for the tails can be obtained by

7;-7-1inn f7::e highest value of j for which E(Yt2j ) or E(6 2 j)

is finite.

The CHARI model is an intuitively reasonable way of

I* modelling conditional heteroscedasticity in an autoregression.

Moreover, simulated sample paths, at least superficially,

resemble certain time series in their patchy appearance.

There are, however, other equally plausible ways of modelling

the conditional variance of an autoregression. One obvious

alternative is to assume -that the conditional variance de-

pends directly on the previous observations. In particular,

the conditloral variance may be directly related to the con-

ditiona! ",.zan. The second CHAR model, to be discussed in

- ,.. next sectz:rn, is one way of modelling such behaviour.

k. C" CHARTI ,odel

The CHARII(p) model can be represented as follows:

CHA.IIJ(p): Yt = .tt '' Yt-p t (4.1a)

p "

i 4 %bkqU
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where 6 t [ O + (31(41Yt-1+'' + PYt-p)2i zt (4.1b)

an'_ -atj 10 i.i.d. (O,I). The parameters A0 and 3 1 are non-

ne_-.ive with AO strictly positive to ensure a positive con-

ditional --,wi.-.

. C:-.I pr,.cess is simply the time series analog of

tne ..eter::-.stic regression model in which the variance

is proportional to the square of the mean (see Carroll and

Ruppert (3) , for example). Like the CHARI process, the

CHARII process is a nonlinear Markov process with the same

linear conditional mean as the classical autoregression.

Unlike the CHARI(p,k) process, the CHARII(p) has the same

order, p, as the classical autoregression. Simulated sample

paths, for four stationary CHARII processes, are shown in

Figure 2.

Conditions which are sufficient for the stationarity

and ergodici;j of a CHARII(p) process are derived in Section

5 and are -_-: ei in Theorem 4.1. As before, it is obvious

.... the :: o. the characteristic polynomial T(z) must

lie outside e unit circle for the process to be stationary.

-esS :s--- :2 the requirement that (1+0 1 )( ~ 1+ . pp

= be less than one, where fj j=l,2,...,p are given by (2.2).

: 1:?

* j[: .. . ... ... . ... .. , .. .. . .... , . . .. . . .
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Theorem 4.1: (Stationarity and Ergodicity of the CHARII(p)

Process) - Let (400 be a CHARII(p) process with (0;0 and

(37V . Assume that all the roots of (z) lie outside the

. circle and yo,yl,...,yp-1 have finite variances. Then

yt _ '+_ly stationary and ergodic if

(1t(3i1 :¢j'1 ... +~.fp)Y'where fj is given by (2.2).

There is a unique stationary initial distribution when

the conditions of Theorem 4.1 hold. The density function,

f" f(Yt-p+l''..Yt ) , for the stationary initial distribution,

can be found by solving:

,-C2

Sexp-I-r 2  - + .py 2 f (yt ... ,PYt l
f O+(3( lYt "" -% t-p ) t-p' d-1 t-p

(4.2)

w r .= .' -,Pyt The corresponding station-

ary, margL--- istribution of Yt can be represented in terms

c:f onfir =-  n 'iction of i.i.d. N(0,1) random variables

(see Equat~cn (.) in the next section).

,he integral equation (4.2) is just as difficult to

solve as (3.2). However, moments can be calculated by in-

vokirng the conditional Normality. For example, the variance,

of a staticnary CHARII(p) process can be evaluated by
y

substituting

U-*--(-.-.-... %* •. .
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E(ht -) =1 0  
+ A1 E[( 0Yt_ +..t_p) 2 ]

= +01 (4if +.. pfp y

.7: (2.3) and solving fordC2 to give

2y

0' O ItS1'1) Cpf+.+(43

q 1P

,r'dz 

1

where 1

In general, the marginal distribution of Yt is sym-

metric, but not Gaussian, with heavier tails than Gaussian.

"2j
All odd moments are zero, by symmetry, and E(yt ) exists and

is finite for a finite number of j, unless (31=0 where all

moments exist. The maximum value of j for which E(yt ) is

finite can be used to bound the tails of the distribution of

2 j
Yt" On tne other hand, if E(yt) is finite, for a given j,

then certain restrictions on the parameters are implied.

For example, when p=1, E(y t )4 implies that

1 - ( 2 )0 .2m -) > ( 4 .4 )

T-... orresonding regions of the parameter space are shown

* in Figure 3, for j=1, which implies stationarity, and for

,. j=2, which corresponds to a finite fourth moment given by

E(Y t )  [3 +60 ,13OCy(1+/j1) ]  16- 3 )313  (45)

L-E.y)

)'(4.5)
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When j=2, condition (4.4) ensures that the denominator of

(4.5) is finite and positive.

Theorems 3.1 and 4.1 are proved in the next section.

"- ~roofs are important because they establish the conditions

under ,.-_ion te CK-ARI and CHARII processes are stationary

--_ gd. arc, in doing so, characterize the stationary

ini-2al diStr--ution. Stationarity and ergodicity are fun-

damental proerties. In practical applications, stationarity

.. % is often imposed by physical constraints on the process pro-

ducing the observations. In some cases, stationarity is

required if the model is to have a meaningful interpretation.

Furthermore, the assumption of stationarity and ergodicity

is central to statistical inference, including parameter

- estimation. Theorems 3.1 and 4.1 are essential to the in-

vestigati-. an. application of the CHARI and CHARII models.

5. Proofs cf Theorems 3.1 and 4.1

"oth :h~: .ms 3.1 and 4.1 are proved using the results

- o§B-reiman '7) which demonstrate that the stationarity

and ergodicity of a larkov process depend on the existence

ana niqueness of a stationary initial distribution. It

, il be shown, by repeated application of the appropriatewo -. . .

defining equation, (3.1a,b) or (4.1a,b), that as t--*o, the

limiting distribution of Yt exists and is independent of

'S the initial conditions. This distribution is the unique

I.%

1-.-%
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stationary initial distribution and the process which has it

as its initial distribution is stationary and ergodic

- (T.-e-rem 7.16, Bruiman *(.2)). In this sense, the CHARI

_ HARII processes are asymptotically stationary and ergo-

~ dic, i :re cox-ditions of Theorem 3.1 or 4.1 hold.

Proof of Theor-em 3.1

Consider the process (6ti defined by (3.1b). Repeated

application of (3.1b) gives:

2 2
+ - + ' ' +  2k )Zk

Ek 0(c(1 k-1 k 0)Zk

2 2 2 2 21l+ C, ( + L F + +C1 z ?  + ". . k l . o 6 2
k+l: [ 0+ 1 0+ 1 k-_+1 k 0 k ~- 1 k" +

2 2
. . 01 k- +''' vj keO 2 z j=0,1,... (5.1)k~i~+k- 101k+j

vhere the i variables um and v. are defined recursively

by the '' ... relations:

0

k Ouk-lz2k-1 '-2uk-2z2k-2 c** ku0 k

.1

0,o
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U.-U 2 + 2 j>k
0 1 j-1 k+j-1 j-2 k+j-2 k jkzjk

an- :or m=1,2,...,k

VO .

"4" ,m - "

- ;(5.3)
2 2 2

" k,mP -1 Vk.l,mZ2k-1 + O2Vk-2,mZ2k-2 +. OkVO,mZ k

2 2 2v L v + +. + zk z;v. v.+..
.jpm 1 j-l,m k+j-1 2 j-2,m k+j-2 +* cxkvj-k,mj

j>k

Equation (5.1), which can be verified by inducidon on j, ex-

presses 6 k+j in terms of the initial values e Et, "

- and the i.-.d. N(0,1) random variables z.kZk+1 , .... zk+j ,

for j=0,1,....

Note that the random variables vj , j=1,2,...,k are

r-_-negat5 - -.. all j and from (5.3) it follows that for

m 1 0,m

- E(v, ) = (v + dE(v ) + k (5.4)
.,5 1k

595,.
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where (5.4) holds for j?,k and E(v. ), j=O,1,...,k-1, are ob-

viously finite. Equation (5.4) is a difference equation in

E- v ), for each m, and has the solution

" B F + . - (5.5)
j r%1 1, 1 ""rn k

are constants and FI F1.. -1

1....;k,m 1..,Fk are

the roots of the characteristic polynomial

which lie outside the unit circle by hypothesis. From

(5.5) the expected values, E(v.j ), die out exponentially

with j and hence E(v. )" for m=1,2,...,k. This implies

that

,(vjm k_m )  E:°E(v )E(_kM)62  (5.6)
=0 M.. j -n=J~In k-i

sin.ce the ;,.,, which depend on zkzk+1,...,Z.j, are indepen-

dent of ,6 , n... kl and by hypothesis eO le..., k-

ha -fnite second moments.

*Now consider the CHARI(p,k) process given by (3.la,b).

JA standard argument for the p-th order autoregression can

be applied to (3.1a) (see Karlin and Taylor (6) , for ex-

ample). This gives

I'
;_'-°.,
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= • + jgy + jpy j=0,1.... (5.7)YP+i ~ m p+j-M ,lp-1 "' jpo''

wh--e the recurrence relations for . and m are:

(5.8)

.J+l = , j=O,1,...

m= 1" 2v .. p

.O,m m

.j+1,m = j,1 rn + j,m+l m=1,2,...,p-1 j=0,1,... (5.9)

The coeffice:-:s can also be obtained from the power series

expansion - r-(z) where

(z) 1-ez-. . .A
i'@V

In -art'<ar,

' c-'(z) Z z m + R (z) (5.10)

where the remainder R (z) is
Oa

0.'

.%

S* -.;.* *. * . S S . . . * . . ' *.;'
%>; ?.S.*S.~ ~



18

Rj(z) =('j,1J z j + l  + j,pzP+J)-1(z). (5.11)

Fur7-ermore, if G l...,Gp are the roots of W(z), which lie
1 ' * ' p

:v-ue the unit circle by assumption, and IzI/minlG 1Im, then

Lhe se_ ze -' ) : mz  c-nverges absolutely. Hence

R " or any IzI~mjnjGi, including z=1. This

impli-.es ti---- r) 0 for m=1,2,...,p, as j-o-, and T, converges

absolutely K Karlin and Taylor (6) for details).

Now, combining (5.1) and (5.7) gives

j pie5-m-k

2 _ _ - p+j.. j 2k(5
2 12)

4.ra +7j V- (5.12)

1.ZO .,. I

E[(< y +. 2+ +
*m m-.F.-mk,1k lok+j-rn-kk 0

E 4 +. .. + jpy0 )2] +

2 *. e2 +. .. + v 2
VM p+j-m-k,k6O

The first ::rm in the last expression vanishes, as j-0, if

O,,r ... ,yp have finite variances, since j,m->O, m=,2,...,p..

T-e last term i3 the (j+)-st term of the Cauchy product of
CO

Zmand .E(v k-1 +...+v 6 2 ) and there'fore must also

converge to zero since the Cauchy product converges, as a

410 1 'Y .Z 71 If
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consequence of' ISI and (5.6). Hence, the expectation
tfl:o m

(5.12) converges to zero as j-o

'ie preceding results imply that, as j~

inquda:i :.=-an, where

U li Sr 2. :.)2 (5-j3)
vo r~o M i 1 p+j-m,(.3

The distribution of' U is independent of' the distribution of'

and-1 1a.. 6k-l Since the [ytl process

is obviously indecomposable, the limiting distribution,

given by (5.13), is the unique stationary initial distribu-

tion arid teyjprocess is asymptotically stationary and
U

ergodic (rinn() )

'roof o f' I.s: 4. 1

* Re-Et _ :Dstitution of' (4.la,b) gives:

y = .v..... +~,y + /3~+ (1(41y~1~** +~y 0
2J,1

YO++.0

+VP O

A 11(s,,-
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(b P, . 1. +... [zI

++**.+ y, +

inp 0 ... p0Y p+j-" +. . j, , - +... j py ~ o .... 5 14

where the coefficients Sm' m=0,1,... and j,m, m=1,2,...,P

are defined by the recurrence relations (5.8) and (5.9) of the

previous proof.

The random variables m=0,1,..., are also defined

recursively. They are given by

W = [PO+3 ,AYp1+V .+YO)2J Zp

vs - - i +,lp1 +S+.,~ + 1'ml~o + o1wj)2J}

" (5.15)

The wj's are uncorrelated and have mean zero. The

+1~ 3-(i~~

variance of wj+ 1 can be found by squaring both sides of (5.15)

and taking expectations to give
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2(j~l1  = o (3E[(5j+1 lYp-+. ..+gj+ 1 y0 )2]+

2 2 822
-.f+1(w) + '+ 1 E(wj)

~ ~ ~ -t3 1  [( 1  I+. +4 YO)2] Therefor' ,

3 2 -01 (5.16)
-~ ~ m jo~ +j-Ml. -,.

2.where 6. is defined to be

. E[(j lyp l+...+ j pYO) j:,l,...

and the nonnegative coefficients f.are given by the recur-

rence relations

'10

*= 1 (6 1 +...+a f ) j=1,2,.... (5.17)
j --

Con~si:.. s he power series M. Equation (5.17) im-Sm
plies th..

(.m)zj + 1. (5.18)i..-:.. L zm ) 1 + 1 - m

Since zm is absolutely convergent whenever IzIlminJG 1'
Sinc

-e- •,
AU
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where G i , i=1,2, ...,p are the roots of t(z) (see previous

proof), (5.18) implies that mZ:'A zm is absolutely convergent

:1 nG and I+ 1 -  m In particular, for

'-i r'1Li if i+j1-e3T..2 >0. Note that 1+p1- ES 2 >O is
:m lI D M 1 0 n

22-quiVFe1't-4-a'(--( 1 1 +. + ) 1 since 2=

PP

-t iSz ::= easy to see that n_2m o. First note that

the coefficients j,m' m=1,2,...,p, satisfyR. R ms m
320 3 O l

where the remnii)e nd m
remainderAwas defined by (5.11), and mon msmz is

absolutely convergent for IzLzmjnjGiI. Thus, for z=1,

Zjj.= +.(j +' p)14cowhich implies that C' 4s, provided

YoYj'..p -1 have finite variances.

Let x be the random variables defined by

x0 =f5 Zp

j+1 [-Lo + 01(Sj+ 1 xo+  + 1 Xj) 2 J jo,1....

FepZatin 7h- argument used to derive (5.16),

2
E(X2) . (5.19)

Now, consider E[(yp.j - x )2] . From (5.14)

E.-(YP+j -= -rn+z=Mm j-m j-m (5.20)

S.x

_* V , 4 - ; ,V - ..'. * .'A . . , .,. w-.,.:.'. . *... ; .... : ....". .._... ' ..,.. '..,..........., .... .* -, .- *.. .,.
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The expectation of wjxj is nonnegative and

E:. i ,.:. >/ 0+j31E[f( j, lYp_+. + • o +. W

+ . - (5.21)

0(12 2
ne :neq1a. -. follows from the fact that ( )2(p0+1 b  2

/ PO+pl(a2 b2) for any real numbers a and b. Since

E [(X2 y2)2 - E(IXYI) >/ JE(XY)I for random variables X and Y,

*- (5.21) implies that

E(wx)) 0+ ,3l2E(wX)+...+$2j " 0 0 j-lXj - )]

This inequality and the fact that

E(Woxo) = : i~+i4 1 ~1 py)
2

j ] Oo

can be use. -: verify that E(wjx)1) 0 Ell M. Hence it follows

from (5. a ; (5.19) that

-xj)
2 ]4 pij)1mEj

,'--" .. j a21

Subtituting into (5.20) and simplifying, using (5.17),

-gives

.

" 4 "4 ""4 "<'''' " " " %Jq .'' '''-j'¢.2 .j' ,f'.'. ,' ,,'-, f. " ,.
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<a+ m -soxj -m - m j-m"

T.e_ --ight-hand side of (5.22) converges to zero as j-*

" Y arnd E: both converge and the right-hand side

of ( 1 k. ( )--st erm of the Cauchy product of' the

- I eie_.

The f§_-:Zsing arguments imply that, as j-*>0,

yp+j-> X

in quadratic mean, where

X = im m (5.23)j ..)o in -m"

The distrii"- '*-,. .tn of X corresponds to the unique stationary

initial di zi-ibution and does not depend on yOy l ,.. .,yp -l .

The CHARIi io process is, therefore, asymptotically stationary

'-_. ergc_~2 ^:eman (2) ).

6. ConcluS:-n

The CHA: and CHARII models are two representatives of

a g neral class of conditionally heteroscedastic autoregres-

sions. Simulated sample paths, generated by the CHARI and

CHARII processes, have a characteristic patcby appearance.

The processes possess several attractive properties, such
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as a linear conditional mean and an autocorrelation function

which is the same as the autocorrelation function of the

classical autoregression. In addition, the processes can be

sho-," to be stationary and ergodic under a reasonable and

-a- verifiable set of assumptions.

The au-or wishes to thank R.D. Martin for helpful sug-

gestions and criticisms of earlier versions of the proofs of

- ."Theorems 3.1 and 4.1.

K

F-



26

References

(a) G.E.P. Box and G.V. Jenkins, Time Series Ananlysis:

Forecasting and Control (Holden-Day, San Francisco, 1976).

, Breiman, Probability (Addison-Wesley, Reading, 1968).

. _ .D. Ruppert, Robust estimation in

-._terccedastic linear models, Ann. Statist. 9 (1982) 206-210.

-z..._. Autorgressive conditional heteroscedasticity

with estimates of the variance of United Kingdom inflation,

Econometrica 50 (1982) 987-1007.

(5) C.W.J. Granger and A. Andersen, An Introduction to Bilinear

Time Series Models (Vandenhoeck and Ruprecht, GOttingen, 1978).

(6) S. Karlin and H.W. Taylor, A First Course in Stochastic

Processes, second edition (Academic Press, New York, 1975).

%°

%4



Figure Captions

Figure I: Simulated sample paths of four stationary CHARI

processes. The mean and variance are the same

for all four cases.

- -,i) 4=.9; OLO=1, c 1:-.9

) ::-:A-I(2,1) 41=-.4, 42=.2; oe0=1.9 2 , -.1=.8

(d) CHARI(2,2) P=-.4 2= .2; Oc0=1.92, . 4 , oc2=.4

Figure 2: Simulated sample paths of four stationary CHARII

processes. The mean and variance are the same

for all four cases.

-" (a) CFARII(1) P=5; O=.7, (31=.9

.. (b) CHAtRII(1) =.9; (A0=.3733, J31=.2

c CHARII(2) =.4 2=.2; (30=2.1333, (31=2

(d) CY.ARII(2) 4-.4, )2=.2; 00=5.8666 , i1=1

Figure 3: regions of stationarity and finite fourth

n snent for the CHARII(1) process. The region

te=>.en the two outer curves is the region of

stationarity: (i+131 )2L 1 and the region between

the inner curves is the region where the fourth

4 2e.*mom~ent exists: 4) (1+6(31+3(31)1. 1.
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